Die Zerlegung der Varianzen
Ziel ist die Zerlegung in \(QS_{innerhalb}\) und \(QS_{zwischen}\) zur Berechnung der Varianzen \(\hat{\sigma}_{innerhalb}^2\) und \(\hat{\sigma}_{zwischen}^2\).
Gleichungen und Grundideen der Quadartsummen
\(QS_{Total} = QS_{innerhalb}+ QS_{zwischen}\)
Gesamtabweichung
\(QS_{Total} = \sum \limits_{i=1}^p \sum \limits_{v=1}^n (x_{vi}-\hat{u})^2\)
Summe der quadratischen Gesamtabweichung
Abweichung durch Faktor
\(QS_{zwischen} = n_i* \sum \limits_{i=1}^p (\hat{u_i}-\hat{u})^2\)
Summe der quadrierten Abweichung zwischen den Faktorstufen (Bedingungen der UV, Gruppe)
Abweichung durch Fehler
\(QS_{innerhalb} = \sum \limits_{i=1}^p \sum \limits_{v=1}^n (x_{vi}-\hat{u_i})^2\)
Summe der quadrierten Abweichung innerhalb der Faktorstufen
\(\hat{u} = Gesamtmittelwert\)
\(\hat{u_i} = Mittelwert\,der\, Faktorstufe_i\)
\(n_i = Stichprobeumfang\,in\,Faktor\)
\(x_{vi} = Messwert\, von\, VP.\, in\, der\, Faktorstufe \,i\)
Rohdaten
1 |
45 |
52 |
23 |
18 |
2 |
41 |
53 |
27 |
16 |
3 |
40 |
48 |
29 |
19 |
4 |
44 |
51 |
24 |
21 |
5 |
43 |
52 |
25 |
17 |
Summe |
213 |
256 |
128 |
91 |
Mittelwert |
42.6 |
51.2 |
25.6 |
18.2 |
\(\hat{u} = \frac{213+256+128+91}{4*5} =34.4\)
Berechnung der Quadratsumme-Total
Abweichungsquadrate der Messwerte vom Gesamtmittel
Die \(QS_{total}\) berechnet sich aus der Summe der quadrierten Abweichungen aller Messwerte vom Gesamtmittelwert. Es können auch die Summe der \(QS_{zwischen}\) und der \(QS_{innerhalb}\) zur Berechnung der \(QS_{total}\) addiert werden. Grundsätzlich ist die totale Quadratsumme weniger von Interesse zur Berechnung des Signifikanztests, da diese nicht benötigt wird. Bei der Effektstärkeberechnung wird die \(QS_{total}\) notwendigt.
\((x_{vi}-\hat{u})^2 = (45-34.4)^2 =112.36\)
\((x_{vi}-\hat{u})^2 = (41-34.4)^2 =43.56\)
\((x_{vi}-\hat{u})^2 = (52-34.4)^2 =309.76\)
1 |
112.36 |
309.76 |
129.96 |
268.96 |
2 |
43.56 |
345.96 |
54.76 |
338.56 |
3 |
31.6 |
184.96 |
29.16 |
237.16 |
4 |
92.16 |
275.56 |
108.16 |
179.56 |
5 |
73.96 |
309.76 |
88.36 |
302.76 |
Summe |
353.64 |
1426 |
410.4 |
1327 |
T1<- 112.36+43.56+31.6+92.16+73.96
T1
[1] 353.64
T2<- 309.76+345.96+184.96+275.56+309.76#
T2
[1] 1426
T3<- 129.96+54.76+29.16+108.16+88.36
T3
[1] 410.4
T4<- 268.96+338.56+237.16+179.56+302.76
T4
[1] 1327
Ergebnis der \(QS_{Total}\), \(df_{Total}\), \(\hat{\sigma}_{Total}^2\)
\(QS_{Total} =356.64 + 1426 + 410.4 + 1327 = 3520.04\)
\(df_{Total} =(4*5)-1 = 19\)
\(\hat{\sigma}_{Total}^2 =3520.04 / 19 = 185.265\)
356.64 + 1426 + 410.4 + 1327
[1] 3520.04
3520.04 / 19
[1] 185.2653
Berechnung der Quardartsumme-Zwischen
Die Grundidee bei der \(QS_{Zwischen}\) liegt in der Erklärung der Unterschiede, die auf die UV bzw. das Treatment zurück gehen. Dabei geht es nicht um die Unterschiede zwischen den Personen in einer Gruppe, sondern um die Unterschiede in der Ausprägung. Daher wird bei der Berechnung der \(QS_{Zwischen}\) angenommen, dass es diese Unterschiede gar nicht gibt und somit alle Personen in einer Gruppe denselben Messwert erzielt haben.
Es ist für die Berechnung der \(QS_{Zwischen}\) von Interesse, wie stark die Gruppenmittelwerte um den Gesamtmittelwert streuen.
\((\hat{u_i}-\hat{u})^2 = (42.6-34.4)^2 =67.24\)
\((\hat{u_i}-\hat{u})^2 = (51.2-34.4)^2 =282.24\)
\((\hat{u_i}-\hat{u})^2 = (25.6-34.4)^2 =77.44\)
\((\hat{u_i}-\hat{u})^2 = (18.2-34.4)^2 =262.44\)
1 |
67.24 |
282.24 |
77.44 |
262.44 |
2 |
67.24 |
282.24 |
77.44 |
262.44 |
3 |
67.24 |
282.24 |
77.44 |
262.44 |
4 |
67.24 |
282.24 |
77.44 |
262.44 |
5 |
67.24 |
282.24 |
77.44 |
262.44 |
Summe |
336.2 |
1411.2 |
387.2 |
1312.2 |
Ergebnis der \(QS_{Zwischen}\), \(df_{Zwischen}\), \(\hat{\sigma}_{Zwischen}^2\)
\(QS_{Zwischen} = 336.2 + 1411.2 + 387.2 + 1312.2 = 3446.8\)
\(df_{Zwischen} = 4-1 = 3\)
\(\hat{\sigma}_{Zwischen}^2 = 3446.8 / 3 = 1148.933\)
Berechnung der Quardartsumme-Innerhalb
Die \(QS_{innerhalb}\) spiegelt die Abweichungen wider, die aufgrund von Messfehlern und individuellen Eigenheiten einer Person dafür sorgen, dass der individuelle Messwert vom geschätzten Gruppenmittelwert abweicht. Um die \(QS_{innerhalb}\) zu berechnen, wird für jede Gruppe die quadrierte Abweichung der Messwerte von jeder Personen mit dem jeweiligen Gruppenmittelwert berechnet.
Rohwerte
1 |
45 |
52 |
23 |
18 |
2 |
41 |
53 |
27 |
16 |
3 |
40 |
48 |
29 |
19 |
4 |
44 |
51 |
24 |
21 |
5 |
43 |
52 |
25 |
17 |
Summe |
213 |
256 |
128 |
91 |
Mittelwert |
42.6 |
51.2 |
25.6 |
18.2 |
\[(x_{2,1}-\hat{v})^2 = (45-42.6)^2 = 5.76 \]
\[(x_{2,2}-\hat{v})^2 = (41-42.6)^2 = 2.56 \]
\[(x_{3,1}-\hat{v})^2 = (52-51.2)^2 = 0.64 \] \[(x_{4,1}-\hat{v})^2 = (23-25.6)^2 = 6.76 \]
1 |
5.76 |
0.64 |
6.76 |
0.04 |
2 |
2.56 |
3.24 |
1.96 |
4.84 |
3 |
6.76 |
10.24 |
11.56 |
0.64 |
4 |
1.96 |
0.04 |
2.56 |
7.84 |
5 |
0.16 |
0.64 |
0.36 |
1.44 |
Summe |
17.2 |
14.8 |
23.2 |
14.8 |
Ergebnis der \(QS_{innerhalb}\), \(df_{innerhalb}\), \(\hat{\sigma}_{innerhalb}^2\)
\(QS_{innerhalb} = 17.2 + 14.8 + 23.2 + 14.8 = 70\)
\(df_{innerhalb} = 4*(5-1) = 16\)
\(\hat{\sigma}_{innerhalb}^2 = 70 / 16 = 4.375\)
\(F_{kritisch}\)
F-Verteilung
\(df_{Zähler} = df_{zwischen} = 3\)
\(df_{Nenner} = df_{innerhalb} = 16\)
Der Wert für \(F_{kritisch}\) liegt bei 3.24.
\(F_{empirisch}\)
\[F_{emp}= \frac{\hat{\sigma}_{Zwischen}^2}{\hat{\sigma}_{innerhalb}^2} = \frac{1148.933} {4.375} = 262.61\]
Signifikanz der Teststatistik
Je mehr Variation durch die Stufenzugehörigkeit erklärt wird, desto höher fällt der F-Wert aus.
\(QS_{zwischen}\) ein Mass für die erklärte Varianz darstellt, während \(QS_{innerhalb}\) ein Mass für die Residualvarianz des Modells darstellt.
Ist der F-Wert höher als der kritische Wert, so ist der Test signifikant.
\[F_{kritisch} = 3.24 < 262.61 = F_{emp}\]
LS0tDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KIyBEaWUgWmVybGVndW5nIGRlciBWYXJpYW56ZW4gDQoNCg0KKipaaWVsIGlzdCBkaWUgWmVybGVndW5nIGluICRRU197aW5uZXJoYWxifSQgdW5kICRRU197endpc2NoZW59JCB6dXIgQmVyZWNobnVuZyBkZXIgVmFyaWFuemVuICRcaGF0e1xzaWdtYX1fe2lubmVyaGFsYn1eMiQgdW5kICRcaGF0e1xzaWdtYX1fe3p3aXNjaGVufV4yJC4qKg0KDQojIyMgR2xlaWNodW5nZW4gdW5kIEdydW5kaWRlZW4gZGVyIFF1YWRhcnRzdW1tZW4gDQoNCg0KJFFTX3tUb3RhbH0gPSBRU197aW5uZXJoYWxifSsgUVNfe3p3aXNjaGVufSQNCjxicj48YnI+DQoNCiMjIyBHZXNhbXRhYndlaWNodW5nDQokUVNfe1RvdGFsfSA9IFxzdW0gXGxpbWl0c197aT0xfV5wIFxzdW0gXGxpbWl0c197dj0xfV5uICh4X3t2aX0tXGhhdHt1fSleMiQgPGJyPg0KU3VtbWUgZGVyIHF1YWRyYXRpc2NoZW4gR2VzYW10YWJ3ZWljaHVuZzxicj48YnI+DQoNCiMjIyBBYndlaWNodW5nIGR1cmNoIEZha3Rvcg0KJFFTX3t6d2lzY2hlbn0gPSBuX2kqIFxzdW0gXGxpbWl0c197aT0xfV5wIChcaGF0e3VfaX0tXGhhdHt1fSleMiQgIDxicj4NClN1bW1lIGRlciBxdWFkcmllcnRlbiBBYndlaWNodW5nIHp3aXNjaGVuIGRlbiBGYWt0b3JzdHVmZW4gKEJlZGluZ3VuZ2VuIGRlciBVViwgR3J1cHBlKTxicj48YnI+DQoNCiMjIyBBYndlaWNodW5nIGR1cmNoIEZlaGxlcg0KJFFTX3tpbm5lcmhhbGJ9ID0gXHN1bSBcbGltaXRzX3tpPTF9XnAgXHN1bSBcbGltaXRzX3t2PTF9Xm4gKHhfe3ZpfS1caGF0e3VfaX0pXjIkICA8YnI+DQpTdW1tZSBkZXIgcXVhZHJpZXJ0ZW4gQWJ3ZWljaHVuZyBpbm5lcmhhbGIgZGVyIEZha3RvcnN0dWZlbjxicj48YnI+DQoNCiRcaGF0e3V9ID0gR2VzYW10bWl0dGVsd2VydCQ8YnI+DQokXGhhdHt1X2l9ID0gTWl0dGVsd2VydFwsZGVyXCwgRmFrdG9yc3R1ZmVfaSQ8YnI+DQokbl9pID0gU3RpY2hwcm9iZXVtZmFuZ1wsaW5cLEZha3RvciQ8YnI+DQokeF97dml9ID0gTWVzc3dlcnRcLCB2b25cLCBWUC5cLCBpblwsIGRlclwsIEZha3RvcnN0dWZlIFwsaSQ8YnI+DQoNCg0KIyMjIFJvaGRhdGVuIA0KDQokVlBcLCBpblwsR3J1cHBlbl9pJHwJVHJhaW5pbmdzYXJ0MSB8CVRyYWluaW5nc2FydDIgfAlUcmFpbmluZ3NhcnQzIHwJVHJhaW5pbmdzYXJ0NAkNCi0tLS0tLS0tLS0tLS0tLS0tLS0tfC0tLS0tLS0tLS0tLS0tLXwtLS0tLS0tLS0tLS0tLS18LS0tLS0tLS0tLS0tLS0tfC0tLS0tLS0tLS0tLS0tLQ0KMQkgICAgICAgICAgICAgICAgICB8NDUgICAgICAgICAgICAgfAk1MiAgICAgICAgICAgIHwJMjMgICAgICAgICAgICB8CSAgMTgJDQoyCSAgICAgICAgICAgICAgICAgIHw0MSAgICAgICAgICAgICB8CTUzICAgICAgICAgICAgfAkyNyAgICAgICAgICAgIHwJICAxNgkNCjMJICAgICAgICAgICAgICAgICAgfDQwICAgICAgICAgICAgIHwJNDggICAgICAgICAgICB8CTI5ICAgICAgICAgICAgfAkgIDE5CQ0KNCAgICAgICAgICAgICAgICAgICB8NDQgICAgICAgICAgICAgfAk1MSAgICAgICAgICAgIHwJMjQgICAgICAgICAgICB8CSAgMjEJDQo1ICAgICAgICAgICAgICAgICAgIHw0MyAgICAgICAgICAgICB8CTUyICAgICAgICAgICAgfAkyNSAgICAgICAgICAgIHwJICAxNwkNCioqU3VtbWUqKiAgICAgICAgICAgfCoqMjEzKiogICAgICAgIHwJKioyNTYgICoqICAgICB8KioxMjgqKiAgICAgICAgfAkgICoqOTEqKgkNCioqTWl0dGVsd2VydCoqICAgICAgfCoqNDIuNioqICAgICAgIHwJKio1MS4yICoqICAgICB8KioyNS42KiogICAgICAgfAkgICoqMTguMioqCQ0KDQokXGhhdHt1fSA9IFxmcmFjezIxMysyNTYrMTI4KzkxfXs0KjV9ID0zNC40JDxicj4NCg0KDQoNCiMjIwlCZXJlY2hudW5nIGRlciBRdWFkcmF0c3VtbWUtVG90YWwgCQkNCg0KQWJ3ZWljaHVuZ3NxdWFkcmF0ZSBkZXIgTWVzc3dlcnRlIHZvbSBHZXNhbXRtaXR0ZWwNCg0KDQpEaWUgJFFTX3t0b3RhbH0kIGJlcmVjaG5ldCBzaWNoIGF1cyBkZXIgU3VtbWUgZGVyIHF1YWRyaWVydGVuIEFid2VpY2h1bmdlbiBhbGxlciBNZXNzd2VydGUgdm9tIEdlc2FtdG1pdHRlbHdlcnQuIEVzIGvDtm5uZW4gYXVjaCBkaWUgU3VtbWUgZGVyICRRU197endpc2NoZW59JCB1bmQgZGVyICRRU197aW5uZXJoYWxifSQgenVyIEJlcmVjaG51bmcgZGVyICRRU197dG90YWx9JCBhZGRpZXJ0IHdlcmRlbi4gR3J1bmRzw6R0emxpY2ggaXN0IGRpZSB0b3RhbGUgUXVhZHJhdHN1bW1lIHdlbmlnZXIgdm9uIEludGVyZXNzZSB6dXIgQmVyZWNobnVuZyBkZXMgU2lnbmlmaWthbnp0ZXN0cywgZGEgZGllc2UgbmljaHQgYmVuw7Z0aWd0IHdpcmQuIEJlaSBkZXIgRWZmZWt0c3TDpHJrZWJlcmVjaG51bmcgd2lyZCBkaWUgJFFTX3t0b3RhbH0kIG5vdHdlbmRpZ3QuIA0KDQokKHhfe3ZpfS1caGF0e3V9KV4yID0gKDQ1LTM0LjQpXjIgPTExMi4zNiQ8YnI+DQokKHhfe3ZpfS1caGF0e3V9KV4yID0gKDQxLTM0LjQpXjIgPTQzLjU2JDxicj4NCiQoeF97dml9LVxoYXR7dX0pXjIgPSAoNTItMzQuNCleMiA9MzA5Ljc2JDxicj4NCg0KDQoJCQkJCQ0KJFZQXCwgaW5cLEdydXBwZW5faSR8CVRyYWluaW5nc2FydDEgfAlUcmFpbmluZ3NhcnQyIHwJVHJhaW5pbmdzYXJ0MyB8CVRyYWluaW5nc2FydDQJDQotLS0tLS0tLS0tLS0tLS0tLS0tLXwtLS0tLS0tLS0tLS0tLS18LS0tLS0tLS0tLS0tLS0tfC0tLS0tLS0tLS0tLS0tLXwtLS0tLS0tLS0tLS0tLS0NCjEJICAgICAgICAgICAgICAgICAgfDExMi4zNiAgICAgICAgIHwzMDkuNzYgICAgICAgICB8CTEyOS45NiAgICAgICAgfAkgIDI2OC45NgkNCjIJICAgICAgICAgICAgICAgICAgfDQzLjU2ICAgICAgICAgIHwzNDUuOTYgICAgICAgICB8CTU0Ljc2ICAgICAgICAgfAkgIDMzOC41NgkNCjMJICAgICAgICAgICAgICAgICAgfDMxLjYgICAgICAgICAgIHwxODQuOTYgICAgICAgICB8CTI5LjE2ICAgICAgICAgfAkgIDIzNy4xNgkNCjQgICAgICAgICAgICAgICAgICAgfDkyLjE2ICAgICAgICAgIHwyNzUuNTYgICAgICAgICB8CTEwOC4xNiAgICAgICAgfAkgIDE3OS41NgkNCjUgICAgICAgICAgICAgICAgICAgfDczLjk2ICAgICAgICAgIHwzMDkuNzYgICAgICAgICB8CTg4LjM2ICAgICAgICAgfAkgIDMwMi43NgkNCioqU3VtbWUqKiAgICAgICAgICAgfCoqMzUzLjY0KiogICAgICB8CSoqMTQyNioqICAgICAgfCoqNDEwLjQqKiAgICAgIHwJICAqKjEzMjcqKgkNCg0KDQoNCmBgYHtyfQ0KVDE8LSAxMTIuMzYrNDMuNTYrMzEuNis5Mi4xNis3My45Ng0KVDENClQyPC0gMzA5Ljc2KzM0NS45NisxODQuOTYrMjc1LjU2KzMwOS43Ng0KVDINClQzPC0gMTI5Ljk2KzU0Ljc2KzI5LjE2KzEwOC4xNis4OC4zNg0KVDMNClQ0PC0gMjY4Ljk2KzMzOC41NisyMzcuMTYrMTc5LjU2KzMwMi43Ng0KVDQNCmBgYA0KDQoNCg0KDQojIyMjIEVyZ2VibmlzIGRlciAkUVNfe1RvdGFsfSQsICRkZl97VG90YWx9JCwgJFxoYXR7XHNpZ21hfV97VG90YWx9XjIkDQokUVNfe1RvdGFsfSA9MzU2LjY0ICsgMTQyNiArIDQxMC40ICsgMTMyNyA9IDM1MjAuMDQkPGJyPg0KJGRmX3tUb3RhbH0gPSg0KjUpLTEgPSAxOSQ8YnI+DQokXGhhdHtcc2lnbWF9X3tUb3RhbH1eMiA9MzUyMC4wNCAvIDE5ID0gMTg1LjI2NSQ8YnI+DQoNCmBgYHtyfQ0KMzU2LjY0ICsgMTQyNiArIDQxMC40ICsgMTMyNw0KMzUyMC4wNCAvIDE5DQpgYGANCg0KDQojIyMJQmVyZWNobnVuZyBkZXIgUXVhcmRhcnRzdW1tZS1ad2lzY2hlbiAJDQoNCg0KRGllIEdydW5kaWRlZSBiZWkgZGVyICRRU197Wndpc2NoZW59JCBsaWVndCBpbiBkZXIgRXJrbMOkcnVuZyBkZXIgIFVudGVyc2NoaWVkZSwgZGllIGF1ZiBkaWUgVVYgYnp3LiBkYXMgVHJlYXRtZW50IHp1csO8Y2sgZ2VoZW4uIERhYmVpIGdlaHQgZXMgbmljaHQgdW0gZGllIFVudGVyc2NoaWVkZSB6d2lzY2hlbiBkZW4gUGVyc29uZW4gaW4gZWluZXIgR3J1cHBlLCBzb25kZXJuIHVtIGRpZSBVbnRlcnNjaGllZGUgaW4gZGVyIEF1c3Byw6RndW5nLiBEYWhlciB3aXJkIGJlaSBkZXIgQmVyZWNobnVuZyBkZXIgJFFTX3tad2lzY2hlbn0kIGFuZ2Vub21tZW4sIGRhc3MgZXMgZGllc2UgVW50ZXJzY2hpZWRlIGdhciBuaWNodCBnaWJ0IHVuZCBzb21pdCBhbGxlIFBlcnNvbmVuIGluIGVpbmVyIEdydXBwZSBkZW5zZWxiZW4gTWVzc3dlcnQgZXJ6aWVsdCBoYWJlbi4gDQoNCioqRXMgaXN0IGbDvHIgZGllIEJlcmVjaG51bmcgZGVyICRRU197Wndpc2NoZW59JCB2b24gSW50ZXJlc3NlLCB3aWUgc3RhcmsgZGllIEdydXBwZW5taXR0ZWx3ZXJ0ZSB1bSBkZW4gR2VzYW10bWl0dGVsd2VydCBzdHJldWVuLioqIA0KDQoNCg0KDQokKFxoYXR7dV9pfS1caGF0e3V9KV4yID0gKDQyLjYtMzQuNCleMiA9NjcuMjQkPGJyPg0KJChcaGF0e3VfaX0tXGhhdHt1fSleMiA9ICg1MS4yLTM0LjQpXjIgPTI4Mi4yNCQ8YnI+DQokKFxoYXR7dV9pfS1caGF0e3V9KV4yID0gKDI1LjYtMzQuNCleMiA9NzcuNDQkPGJyPg0KJChcaGF0e3VfaX0tXGhhdHt1fSleMiA9ICgxOC4yLTM0LjQpXjIgPTI2Mi40NCQ8YnI+DQoNCg0KJFZQXCwgaW5cLEdydXBwZW5faSR8CVRyYWluaW5nc2FydDEgfAlUcmFpbmluZ3NhcnQyIHwJVHJhaW5pbmdzYXJ0MyB8CVRyYWluaW5nc2FydDQJDQotLS0tLS0tLS0tLS0tLS0tLS0tLXwtLS0tLS0tLS0tLS0tLS18LS0tLS0tLS0tLS0tLS0tfC0tLS0tLS0tLS0tLS0tLXwtLS0tLS0tLS0tLS0tLS0NCjEJICAgICAgICAgICAgICAgICAgfDY3LjI0ICAgICAgICAgIHwJMjgyLjI0ICAgICAgICB8CTc3LjQ0ICAgICAgICAgfAkgIDI2Mi40NAkNCjIJICAgICAgICAgICAgICAgICAgfDY3LjI0ICAgICAgICAgIHwJMjgyLjI0ICAgICAgICB8CTc3LjQ0ICAgICAgICAgfAkgIDI2Mi40NAkNCjMJICAgICAgICAgICAgICAgICAgfDY3LjI0ICAgICAgICAgIHwJMjgyLjI0ICAgICAgICB8CTc3LjQ0ICAgICAgICAgfAkgIDI2Mi40NAkNCjQJICAgICAgICAgICAgICAgICAgfDY3LjI0ICAgICAgICAgIHwJMjgyLjI0ICAgICAgICB8CTc3LjQ0ICAgICAgICAgfAkgIDI2Mi40NAkNCjUJICAgICAgICAgICAgICAgICAgfDY3LjI0ICAgICAgICAgIHwJMjgyLjI0ICAgICAgICB8CTc3LjQ0ICAgICAgICAgfAkgIDI2Mi40NAkNCioqU3VtbWUqKiAgICAgICAgICAgfCoqMzM2LjIqKiAgICAgIHwJKioxNDExLjIqKiAgICB8KiozODcuMioqICAgICAgfAkgICoqMTMxMi4yKioNCg0KIyMjIyBFcmdlYm5pcyBkZXIgJFFTX3tad2lzY2hlbn0kLCAkZGZfe1p3aXNjaGVufSQsICRcaGF0e1xzaWdtYX1fe1p3aXNjaGVufV4yJA0KDQoNCiRRU197Wndpc2NoZW59ID0gMzM2LjIgKyAxNDExLjIgKyAzODcuMiArIDEzMTIuMiA9IDM0NDYuOCQ8YnI+DQokZGZfe1p3aXNjaGVufSA9IDQtMSA9IDMkPGJyPg0KJFxoYXR7XHNpZ21hfV97Wndpc2NoZW59XjIgPSAzNDQ2LjggLyAzID0gMTE0OC45MzMkPGJyPg0KDQoNCiMjIwlCZXJlY2hudW5nIGRlciBRdWFyZGFydHN1bW1lLUlubmVyaGFsYiANCg0KDQpEaWUgJFFTX3tpbm5lcmhhbGJ9JCBzcGllZ2VsdCBkaWUgQWJ3ZWljaHVuZ2VuIHdpZGVyLCBkaWUgYXVmZ3J1bmQgdm9uIE1lc3NmZWhsZXJuIHVuZCBpbmRpdmlkdWVsbGVuIEVpZ2VuaGVpdGVuIGVpbmVyIFBlcnNvbiBkYWbDvHIgc29yZ2VuLCBkYXNzIGRlciBpbmRpdmlkdWVsbGUgTWVzc3dlcnQgdm9tIGdlc2Now6R0enRlbiBHcnVwcGVubWl0dGVsd2VydCBhYndlaWNodC4gVW0gZGllICRRU197aW5uZXJoYWxifSQgenUgYmVyZWNobmVuLCB3aXJkIGbDvHIgamVkZSBHcnVwcGUgZGllIHF1YWRyaWVydGUgQWJ3ZWljaHVuZyBkZXIgTWVzc3dlcnRlIHZvbiBqZWRlciBQZXJzb25lbiBtaXQgZGVtIGpld2VpbGlnZW4gR3J1cHBlbm1pdHRlbHdlcnQgYmVyZWNobmV0Lg0KDQojIyMjIFJvaHdlcnRlIA0KIA0KJFZQXCwgaW5cLEdydXBwZW5faSR8CVRyYWluaW5nc2FydDEgfAlUcmFpbmluZ3NhcnQyIHwJVHJhaW5pbmdzYXJ0MyB8CVRyYWluaW5nc2FydDQJDQotLS0tLS0tLS0tLS0tLS0tLS0tLXwtLS0tLS0tLS0tLS0tLS18LS0tLS0tLS0tLS0tLS0tfC0tLS0tLS0tLS0tLS0tLXwtLS0tLS0tLS0tLS0tLS0NCjEJICAgICAgICAgICAgICAgICAgfDQ1ICAgICAgICAgICAgIHwJNTIgICAgICAgICAgICB8CTIzICAgICAgICAgICAgfAkgIDE4CQ0KMgkgICAgICAgICAgICAgICAgICB8NDEgICAgICAgICAgICAgfAk1MyAgICAgICAgICAgIHwJMjcgICAgICAgICAgICB8CSAgMTYJDQozCSAgICAgICAgICAgICAgICAgIHw0MCAgICAgICAgICAgICB8CTQ4ICAgICAgICAgICAgfAkyOSAgICAgICAgICAgIHwJICAxOQkNCjQgICAgICAgICAgICAgICAgICAgfDQ0ICAgICAgICAgICAgIHwJNTEgICAgICAgICAgICB8CTI0ICAgICAgICAgICAgfAkgIDIxCQ0KNSAgICAgICAgICAgICAgICAgICB8NDMgICAgICAgICAgICAgfAk1MiAgICAgICAgICAgIHwJMjUgICAgICAgICAgICB8CSAgMTcJDQoqKlN1bW1lKiogICAgICAgICAgIHwqKjIxMyoqICAgICAgICB8CSoqMjU2ICAqKiAgICAgfCoqMTI4KiogICAgICAgIHwJICAqKjkxKioJDQoqKk1pdHRlbHdlcnQqKiAgICAgIHwqKjQyLjYqKiAgICAgICB8CSoqNTEuMiAqKiAgICAgfCoqMjUuNioqICAgICAgIHwJICAqKjE4LjIqKgkNCg0KJCQoeF97MiwxfS1caGF0e3Z9KV4yID0gKDQ1LTQyLjYpXjIgPSA1Ljc2ICQkIA0KDQokJCh4X3syLDJ9LVxoYXR7dn0pXjIgPSAoNDEtNDIuNileMiA9IDIuNTYgJCQgDQoNCiQkKHhfezMsMX0tXGhhdHt2fSleMiA9ICg1Mi01MS4yKV4yID0gMC42NCAkJCANCiQkKHhfezQsMX0tXGhhdHt2fSleMiA9ICgyMy0yNS42KV4yID0gNi43NiAkJA0KDQoNCg0KJFZQXCwgaW5cLEdydXBwZW5faSR8CVRyYWluaW5nc2FydDEgfAlUcmFpbmluZ3NhcnQyIHwJVHJhaW5pbmdzYXJ0MyB8CVRyYWluaW5nc2FydDQJDQotLS0tLS0tLS0tLS0tLS0tLS0tLXwtLS0tLS0tLS0tLS0tLS18LS0tLS0tLS0tLS0tLS0tfC0tLS0tLS0tLS0tLS0tLXwtLS0tLS0tLS0tLS0tLS0NCjEJICAgICAgICAgICAgICAgICAgfDUuNzYgICAgICAgICAgIHwJMC42NCAgICAgICAgICB8CTYuNzYgICAgICAgICAgfAkgIDAuMDQJDQoyCSAgICAgICAgICAgICAgICAgIHwyLjU2ICAgICAgICAgICB8CTMuMjQgICAgICAgICAgfAkxLjk2ICAgICAgICAgIHwJICA0Ljg0CQ0KMwkgICAgICAgICAgICAgICAgICB8Ni43NiAgICAgICAgICAgfAkxMC4yNCAgICAgICAgIHwJMTEuNTYgICAgICAgICB8CSAgMC42NA0KNAkgICAgICAgICAgICAgICAgICB8MS45NiAgICAgICAgICAgfAkwLjA0ICAgICAgICAgIHwJMi41NiAgICAgICAgICB8CSAgNy44NAkNCjUJICAgICAgICAgICAgICAgICAgfDAuMTYgICAgICAgICAgIHwJMC42NCAgICAgICAgICB8CTAuMzYgICAgICAgICAgfAkgIDEuNDQJDQoqKlN1bW1lKiogICAgICAgICAgIHwqKjE3LjIqKiAgICAgICB8CSoqMTQuOCoqICAgICAgfCoqMjMuMioqICAgICAgIHwJICAqKjE0LjgqKgkNCg0KIyMjIyBFcmdlYm5pcyBkZXIgJFFTX3tpbm5lcmhhbGJ9JCwgJGRmX3tpbm5lcmhhbGJ9JCwgJFxoYXR7XHNpZ21hfV97aW5uZXJoYWxifV4yJA0KDQokUVNfe2lubmVyaGFsYn0gPSAxNy4yICsgMTQuOCArIDIzLjIgKyAxNC44ID0gNzAkPGJyPg0KJGRmX3tpbm5lcmhhbGJ9ID0gNCooNS0xKSA9IDE2JDxicj4NCiRcaGF0e1xzaWdtYX1fe2lubmVyaGFsYn1eMiA9IDcwIC8gMTYgPSA0LjM3NSQ8YnI+DQoNCg0KDQoNCiMjIyAgJEZfe2tyaXRpc2NofSQgDQoqKkYtVmVydGVpbHVuZyoqIA0KDQokRl97a3JpdGlzY2h9JA0KJGRmX3taw6RobGVyfSA9IGRmX3t6d2lzY2hlbn0gPSAzJDxicj4gDQokZGZfe05lbm5lcn0gPSBkZl97aW5uZXJoYWxifSA9IDE2JDxicj4NCg0KRGVyIFdlcnQgZsO8ciAkRl97a3JpdGlzY2h9JCBsaWVndCBiZWkgMy4yNC4NCg0KDQoNCg0KDQojIyMgICRGX3tlbXBpcmlzY2h9JCANCg0KJCRGX3tlbXB9PSBcZnJhY3tcaGF0e1xzaWdtYX1fe1p3aXNjaGVufV4yfXtcaGF0e1xzaWdtYX1fe2lubmVyaGFsYn1eMn0gPSBcZnJhY3sxMTQ4LjkzM30gezQuMzc1fSA9IDI2Mi42MSQkDQoNCg0KDQoNCiMjIFNpZ25pZmlrYW56IGRlciBUZXN0c3RhdGlzdGlrDQoNCg0KSmUgbWVociBWYXJpYXRpb24gZHVyY2ggZGllIFN0dWZlbnp1Z2Vow7ZyaWdrZWl0IGVya2zDpHJ0IHdpcmQsIGRlc3RvIGjDtmhlciBmw6RsbHQgZGVyIEYtV2VydCBhdXMuIA0KDQokUVNfe3p3aXNjaGVufSQgZWluIE1hc3MgZsO8ciBkaWUgZXJrbMOkcnRlIFZhcmlhbnogZGFyc3RlbGx0LCB3w6RocmVuZCAkUVNfe2lubmVyaGFsYn0kIGVpbiBNYXNzIGbDvHIgZGllIFJlc2lkdWFsdmFyaWFueiBkZXMgTW9kZWxscyBkYXJzdGVsbHQuIA0KDQpJc3QgZGVyIEYtV2VydCBow7ZoZXIgYWxzIGRlciBrcml0aXNjaGUgV2VydCwgc28gaXN0IGRlciBUZXN0IHNpZ25pZmlrYW50Lg0KDQokJEZfe2tyaXRpc2NofSAgPSAzLjI0IDwgMjYyLjYxID0gRl97ZW1wfSQkDQo=