Die Zerlegung der Varianzen

Ziel ist die Zerlegung in \(QS_{innerhalb}\) und \(QS_{zwischen}\) zur Berechnung der Varianzen \(\hat{\sigma}_{innerhalb}^2\) und \(\hat{\sigma}_{zwischen}^2\).

Gleichungen und Grundideen der Quadartsummen

\(QS_{Total} = QS_{innerhalb}+ QS_{zwischen}\)

Gesamtabweichung

\(QS_{Total} = \sum \limits_{i=1}^p \sum \limits_{v=1}^n (x_{vi}-\hat{u})^2\)
Summe der quadratischen Gesamtabweichung

Abweichung durch Faktor

\(QS_{zwischen} = n_i* \sum \limits_{i=1}^p (\hat{u_i}-\hat{u})^2\)
Summe der quadrierten Abweichung zwischen den Faktorstufen (Bedingungen der UV, Gruppe)

Abweichung durch Fehler

\(QS_{innerhalb} = \sum \limits_{i=1}^p \sum \limits_{v=1}^n (x_{vi}-\hat{u_i})^2\)
Summe der quadrierten Abweichung innerhalb der Faktorstufen

\(\hat{u} = Gesamtmittelwert\)
\(\hat{u_i} = Mittelwert\,der\, Faktorstufe_i\)
\(n_i = Stichprobeumfang\,in\,Faktor\)
\(x_{vi} = Messwert\, von\, VP.\, in\, der\, Faktorstufe \,i\)

Rohdaten

\(VP\, in\,Gruppen_i\) Trainingsart1 Trainingsart2 Trainingsart3 Trainingsart4
1 45 52 23 18
2 41 53 27 16
3 40 48 29 19
4 44 51 24 21
5 43 52 25 17
Summe 213 256 128 91
Mittelwert 42.6 51.2 25.6 18.2

\(\hat{u} = \frac{213+256+128+91}{4*5} =34.4\)

Berechnung der Quadratsumme-Total

Abweichungsquadrate der Messwerte vom Gesamtmittel

Die \(QS_{total}\) berechnet sich aus der Summe der quadrierten Abweichungen aller Messwerte vom Gesamtmittelwert. Es können auch die Summe der \(QS_{zwischen}\) und der \(QS_{innerhalb}\) zur Berechnung der \(QS_{total}\) addiert werden. Grundsätzlich ist die totale Quadratsumme weniger von Interesse zur Berechnung des Signifikanztests, da diese nicht benötigt wird. Bei der Effektstärkeberechnung wird die \(QS_{total}\) notwendigt.

\((x_{vi}-\hat{u})^2 = (45-34.4)^2 =112.36\)
\((x_{vi}-\hat{u})^2 = (41-34.4)^2 =43.56\)
\((x_{vi}-\hat{u})^2 = (52-34.4)^2 =309.76\)

\(VP\, in\,Gruppen_i\) Trainingsart1 Trainingsart2 Trainingsart3 Trainingsart4
1 112.36 309.76 129.96 268.96
2 43.56 345.96 54.76 338.56
3 31.6 184.96 29.16 237.16
4 92.16 275.56 108.16 179.56
5 73.96 309.76 88.36 302.76
Summe 353.64 1426 410.4 1327
T1<- 112.36+43.56+31.6+92.16+73.96
T1
[1] 353.64
T2<- 309.76+345.96+184.96+275.56+309.76#
T2
[1] 1426
T3<- 129.96+54.76+29.16+108.16+88.36
T3
[1] 410.4
T4<- 268.96+338.56+237.16+179.56+302.76
T4
[1] 1327

Ergebnis der \(QS_{Total}\), \(df_{Total}\), \(\hat{\sigma}_{Total}^2\)

\(QS_{Total} =356.64 + 1426 + 410.4 + 1327 = 3520.04\)
\(df_{Total} =(4*5)-1 = 19\)
\(\hat{\sigma}_{Total}^2 =3520.04 / 19 = 185.265\)

356.64 + 1426 + 410.4 + 1327
[1] 3520.04
3520.04 / 19
[1] 185.2653

Berechnung der Quardartsumme-Zwischen

Die Grundidee bei der \(QS_{Zwischen}\) liegt in der Erklärung der Unterschiede, die auf die UV bzw. das Treatment zurück gehen. Dabei geht es nicht um die Unterschiede zwischen den Personen in einer Gruppe, sondern um die Unterschiede in der Ausprägung. Daher wird bei der Berechnung der \(QS_{Zwischen}\) angenommen, dass es diese Unterschiede gar nicht gibt und somit alle Personen in einer Gruppe denselben Messwert erzielt haben.

Es ist für die Berechnung der \(QS_{Zwischen}\) von Interesse, wie stark die Gruppenmittelwerte um den Gesamtmittelwert streuen.

\((\hat{u_i}-\hat{u})^2 = (42.6-34.4)^2 =67.24\)
\((\hat{u_i}-\hat{u})^2 = (51.2-34.4)^2 =282.24\)
\((\hat{u_i}-\hat{u})^2 = (25.6-34.4)^2 =77.44\)
\((\hat{u_i}-\hat{u})^2 = (18.2-34.4)^2 =262.44\)

\(VP\, in\,Gruppen_i\) Trainingsart1 Trainingsart2 Trainingsart3 Trainingsart4
1 67.24 282.24 77.44 262.44
2 67.24 282.24 77.44 262.44
3 67.24 282.24 77.44 262.44
4 67.24 282.24 77.44 262.44
5 67.24 282.24 77.44 262.44
Summe 336.2 1411.2 387.2 1312.2

Ergebnis der \(QS_{Zwischen}\), \(df_{Zwischen}\), \(\hat{\sigma}_{Zwischen}^2\)

\(QS_{Zwischen} = 336.2 + 1411.2 + 387.2 + 1312.2 = 3446.8\)
\(df_{Zwischen} = 4-1 = 3\)
\(\hat{\sigma}_{Zwischen}^2 = 3446.8 / 3 = 1148.933\)

Berechnung der Quardartsumme-Innerhalb

Die \(QS_{innerhalb}\) spiegelt die Abweichungen wider, die aufgrund von Messfehlern und individuellen Eigenheiten einer Person dafür sorgen, dass der individuelle Messwert vom geschätzten Gruppenmittelwert abweicht. Um die \(QS_{innerhalb}\) zu berechnen, wird für jede Gruppe die quadrierte Abweichung der Messwerte von jeder Personen mit dem jeweiligen Gruppenmittelwert berechnet.

Rohwerte

\(VP\, in\,Gruppen_i\) Trainingsart1 Trainingsart2 Trainingsart3 Trainingsart4
1 45 52 23 18
2 41 53 27 16
3 40 48 29 19
4 44 51 24 21
5 43 52 25 17
Summe 213 256 128 91
Mittelwert 42.6 51.2 25.6 18.2

\[(x_{2,1}-\hat{v})^2 = (45-42.6)^2 = 5.76 \]

\[(x_{2,2}-\hat{v})^2 = (41-42.6)^2 = 2.56 \]

\[(x_{3,1}-\hat{v})^2 = (52-51.2)^2 = 0.64 \] \[(x_{4,1}-\hat{v})^2 = (23-25.6)^2 = 6.76 \]

\(VP\, in\,Gruppen_i\) Trainingsart1 Trainingsart2 Trainingsart3 Trainingsart4
1 5.76 0.64 6.76 0.04
2 2.56 3.24 1.96 4.84
3 6.76 10.24 11.56 0.64
4 1.96 0.04 2.56 7.84
5 0.16 0.64 0.36 1.44
Summe 17.2 14.8 23.2 14.8

Ergebnis der \(QS_{innerhalb}\), \(df_{innerhalb}\), \(\hat{\sigma}_{innerhalb}^2\)

\(QS_{innerhalb} = 17.2 + 14.8 + 23.2 + 14.8 = 70\)
\(df_{innerhalb} = 4*(5-1) = 16\)
\(\hat{\sigma}_{innerhalb}^2 = 70 / 16 = 4.375\)

\(F_{kritisch}\)

F-Verteilung

\(df_{Zähler} = df_{zwischen} = 3\)
\(df_{Nenner} = df_{innerhalb} = 16\)

Der Wert für \(F_{kritisch}\) liegt bei 3.24.

\(F_{empirisch}\)

\[F_{emp}= \frac{\hat{\sigma}_{Zwischen}^2}{\hat{\sigma}_{innerhalb}^2} = \frac{1148.933} {4.375} = 262.61\]

Signifikanz der Teststatistik

Je mehr Variation durch die Stufenzugehörigkeit erklärt wird, desto höher fällt der F-Wert aus.

\(QS_{zwischen}\) ein Mass für die erklärte Varianz darstellt, während \(QS_{innerhalb}\) ein Mass für die Residualvarianz des Modells darstellt.

Ist der F-Wert höher als der kritische Wert, so ist der Test signifikant.

\[F_{kritisch} = 3.24 < 262.61 = F_{emp}\]

LS0tDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KIyBEaWUgWmVybGVndW5nIGRlciBWYXJpYW56ZW4gDQoNCg0KKipaaWVsIGlzdCBkaWUgWmVybGVndW5nIGluICRRU197aW5uZXJoYWxifSQgdW5kICRRU197endpc2NoZW59JCB6dXIgQmVyZWNobnVuZyBkZXIgVmFyaWFuemVuICRcaGF0e1xzaWdtYX1fe2lubmVyaGFsYn1eMiQgdW5kICRcaGF0e1xzaWdtYX1fe3p3aXNjaGVufV4yJC4qKg0KDQojIyMgR2xlaWNodW5nZW4gdW5kIEdydW5kaWRlZW4gZGVyIFF1YWRhcnRzdW1tZW4gDQoNCg0KJFFTX3tUb3RhbH0gPSBRU197aW5uZXJoYWxifSsgUVNfe3p3aXNjaGVufSQNCjxicj48YnI+DQoNCiMjIyBHZXNhbXRhYndlaWNodW5nDQokUVNfe1RvdGFsfSA9IFxzdW0gXGxpbWl0c197aT0xfV5wIFxzdW0gXGxpbWl0c197dj0xfV5uICh4X3t2aX0tXGhhdHt1fSleMiQgPGJyPg0KU3VtbWUgZGVyIHF1YWRyYXRpc2NoZW4gR2VzYW10YWJ3ZWljaHVuZzxicj48YnI+DQoNCiMjIyBBYndlaWNodW5nIGR1cmNoIEZha3Rvcg0KJFFTX3t6d2lzY2hlbn0gPSBuX2kqIFxzdW0gXGxpbWl0c197aT0xfV5wIChcaGF0e3VfaX0tXGhhdHt1fSleMiQgIDxicj4NClN1bW1lIGRlciBxdWFkcmllcnRlbiBBYndlaWNodW5nIHp3aXNjaGVuIGRlbiBGYWt0b3JzdHVmZW4gKEJlZGluZ3VuZ2VuIGRlciBVViwgR3J1cHBlKTxicj48YnI+DQoNCiMjIyBBYndlaWNodW5nIGR1cmNoIEZlaGxlcg0KJFFTX3tpbm5lcmhhbGJ9ID0gXHN1bSBcbGltaXRzX3tpPTF9XnAgXHN1bSBcbGltaXRzX3t2PTF9Xm4gKHhfe3ZpfS1caGF0e3VfaX0pXjIkICA8YnI+DQpTdW1tZSBkZXIgcXVhZHJpZXJ0ZW4gQWJ3ZWljaHVuZyBpbm5lcmhhbGIgZGVyIEZha3RvcnN0dWZlbjxicj48YnI+DQoNCiRcaGF0e3V9ID0gR2VzYW10bWl0dGVsd2VydCQ8YnI+DQokXGhhdHt1X2l9ID0gTWl0dGVsd2VydFwsZGVyXCwgRmFrdG9yc3R1ZmVfaSQ8YnI+DQokbl9pID0gU3RpY2hwcm9iZXVtZmFuZ1wsaW5cLEZha3RvciQ8YnI+DQokeF97dml9ID0gTWVzc3dlcnRcLCB2b25cLCBWUC5cLCBpblwsIGRlclwsIEZha3RvcnN0dWZlIFwsaSQ8YnI+DQoNCg0KIyMjIFJvaGRhdGVuIA0KDQokVlBcLCBpblwsR3J1cHBlbl9pJHwJVHJhaW5pbmdzYXJ0MSB8CVRyYWluaW5nc2FydDIgfAlUcmFpbmluZ3NhcnQzIHwJVHJhaW5pbmdzYXJ0NAkNCi0tLS0tLS0tLS0tLS0tLS0tLS0tfC0tLS0tLS0tLS0tLS0tLXwtLS0tLS0tLS0tLS0tLS18LS0tLS0tLS0tLS0tLS0tfC0tLS0tLS0tLS0tLS0tLQ0KMQkgICAgICAgICAgICAgICAgICB8NDUgICAgICAgICAgICAgfAk1MiAgICAgICAgICAgIHwJMjMgICAgICAgICAgICB8CSAgMTgJDQoyCSAgICAgICAgICAgICAgICAgIHw0MSAgICAgICAgICAgICB8CTUzICAgICAgICAgICAgfAkyNyAgICAgICAgICAgIHwJICAxNgkNCjMJICAgICAgICAgICAgICAgICAgfDQwICAgICAgICAgICAgIHwJNDggICAgICAgICAgICB8CTI5ICAgICAgICAgICAgfAkgIDE5CQ0KNCAgICAgICAgICAgICAgICAgICB8NDQgICAgICAgICAgICAgfAk1MSAgICAgICAgICAgIHwJMjQgICAgICAgICAgICB8CSAgMjEJDQo1ICAgICAgICAgICAgICAgICAgIHw0MyAgICAgICAgICAgICB8CTUyICAgICAgICAgICAgfAkyNSAgICAgICAgICAgIHwJICAxNwkNCioqU3VtbWUqKiAgICAgICAgICAgfCoqMjEzKiogICAgICAgIHwJKioyNTYgICoqICAgICB8KioxMjgqKiAgICAgICAgfAkgICoqOTEqKgkNCioqTWl0dGVsd2VydCoqICAgICAgfCoqNDIuNioqICAgICAgIHwJKio1MS4yICoqICAgICB8KioyNS42KiogICAgICAgfAkgICoqMTguMioqCQ0KDQokXGhhdHt1fSA9IFxmcmFjezIxMysyNTYrMTI4KzkxfXs0KjV9ID0zNC40JDxicj4NCg0KDQoNCiMjIwlCZXJlY2hudW5nIGRlciBRdWFkcmF0c3VtbWUtVG90YWwgCQkNCg0KQWJ3ZWljaHVuZ3NxdWFkcmF0ZSBkZXIgTWVzc3dlcnRlIHZvbSBHZXNhbXRtaXR0ZWwNCg0KDQpEaWUgJFFTX3t0b3RhbH0kIGJlcmVjaG5ldCBzaWNoIGF1cyBkZXIgU3VtbWUgZGVyIHF1YWRyaWVydGVuIEFid2VpY2h1bmdlbiBhbGxlciBNZXNzd2VydGUgdm9tIEdlc2FtdG1pdHRlbHdlcnQuIEVzIGvDtm5uZW4gYXVjaCBkaWUgU3VtbWUgZGVyICRRU197endpc2NoZW59JCB1bmQgZGVyICRRU197aW5uZXJoYWxifSQgenVyIEJlcmVjaG51bmcgZGVyICRRU197dG90YWx9JCBhZGRpZXJ0IHdlcmRlbi4gR3J1bmRzw6R0emxpY2ggaXN0IGRpZSB0b3RhbGUgUXVhZHJhdHN1bW1lIHdlbmlnZXIgdm9uIEludGVyZXNzZSB6dXIgQmVyZWNobnVuZyBkZXMgU2lnbmlmaWthbnp0ZXN0cywgZGEgZGllc2UgbmljaHQgYmVuw7Z0aWd0IHdpcmQuIEJlaSBkZXIgRWZmZWt0c3TDpHJrZWJlcmVjaG51bmcgd2lyZCBkaWUgJFFTX3t0b3RhbH0kIG5vdHdlbmRpZ3QuIA0KDQokKHhfe3ZpfS1caGF0e3V9KV4yID0gKDQ1LTM0LjQpXjIgPTExMi4zNiQ8YnI+DQokKHhfe3ZpfS1caGF0e3V9KV4yID0gKDQxLTM0LjQpXjIgPTQzLjU2JDxicj4NCiQoeF97dml9LVxoYXR7dX0pXjIgPSAoNTItMzQuNCleMiA9MzA5Ljc2JDxicj4NCg0KDQoJCQkJCQ0KJFZQXCwgaW5cLEdydXBwZW5faSR8CVRyYWluaW5nc2FydDEgfAlUcmFpbmluZ3NhcnQyIHwJVHJhaW5pbmdzYXJ0MyB8CVRyYWluaW5nc2FydDQJDQotLS0tLS0tLS0tLS0tLS0tLS0tLXwtLS0tLS0tLS0tLS0tLS18LS0tLS0tLS0tLS0tLS0tfC0tLS0tLS0tLS0tLS0tLXwtLS0tLS0tLS0tLS0tLS0NCjEJICAgICAgICAgICAgICAgICAgfDExMi4zNiAgICAgICAgIHwzMDkuNzYgICAgICAgICB8CTEyOS45NiAgICAgICAgfAkgIDI2OC45NgkNCjIJICAgICAgICAgICAgICAgICAgfDQzLjU2ICAgICAgICAgIHwzNDUuOTYgICAgICAgICB8CTU0Ljc2ICAgICAgICAgfAkgIDMzOC41NgkNCjMJICAgICAgICAgICAgICAgICAgfDMxLjYgICAgICAgICAgIHwxODQuOTYgICAgICAgICB8CTI5LjE2ICAgICAgICAgfAkgIDIzNy4xNgkNCjQgICAgICAgICAgICAgICAgICAgfDkyLjE2ICAgICAgICAgIHwyNzUuNTYgICAgICAgICB8CTEwOC4xNiAgICAgICAgfAkgIDE3OS41NgkNCjUgICAgICAgICAgICAgICAgICAgfDczLjk2ICAgICAgICAgIHwzMDkuNzYgICAgICAgICB8CTg4LjM2ICAgICAgICAgfAkgIDMwMi43NgkNCioqU3VtbWUqKiAgICAgICAgICAgfCoqMzUzLjY0KiogICAgICB8CSoqMTQyNioqICAgICAgfCoqNDEwLjQqKiAgICAgIHwJICAqKjEzMjcqKgkNCg0KDQoNCmBgYHtyfQ0KVDE8LSAxMTIuMzYrNDMuNTYrMzEuNis5Mi4xNis3My45Ng0KVDENClQyPC0gMzA5Ljc2KzM0NS45NisxODQuOTYrMjc1LjU2KzMwOS43Ng0KVDINClQzPC0gMTI5Ljk2KzU0Ljc2KzI5LjE2KzEwOC4xNis4OC4zNg0KVDMNClQ0PC0gMjY4Ljk2KzMzOC41NisyMzcuMTYrMTc5LjU2KzMwMi43Ng0KVDQNCmBgYA0KDQoNCg0KDQojIyMjIEVyZ2VibmlzIGRlciAkUVNfe1RvdGFsfSQsICRkZl97VG90YWx9JCwgJFxoYXR7XHNpZ21hfV97VG90YWx9XjIkDQokUVNfe1RvdGFsfSA9MzU2LjY0ICsgMTQyNiArIDQxMC40ICsgMTMyNyA9IDM1MjAuMDQkPGJyPg0KJGRmX3tUb3RhbH0gPSg0KjUpLTEgPSAxOSQ8YnI+DQokXGhhdHtcc2lnbWF9X3tUb3RhbH1eMiA9MzUyMC4wNCAvIDE5ID0gMTg1LjI2NSQ8YnI+DQoNCmBgYHtyfQ0KMzU2LjY0ICsgMTQyNiArIDQxMC40ICsgMTMyNw0KMzUyMC4wNCAvIDE5DQpgYGANCg0KDQojIyMJQmVyZWNobnVuZyBkZXIgUXVhcmRhcnRzdW1tZS1ad2lzY2hlbiAJDQoNCg0KRGllIEdydW5kaWRlZSBiZWkgZGVyICRRU197Wndpc2NoZW59JCBsaWVndCBpbiBkZXIgRXJrbMOkcnVuZyBkZXIgIFVudGVyc2NoaWVkZSwgZGllIGF1ZiBkaWUgVVYgYnp3LiBkYXMgVHJlYXRtZW50IHp1csO8Y2sgZ2VoZW4uIERhYmVpIGdlaHQgZXMgbmljaHQgdW0gZGllIFVudGVyc2NoaWVkZSB6d2lzY2hlbiBkZW4gUGVyc29uZW4gaW4gZWluZXIgR3J1cHBlLCBzb25kZXJuIHVtIGRpZSBVbnRlcnNjaGllZGUgaW4gZGVyIEF1c3Byw6RndW5nLiBEYWhlciB3aXJkIGJlaSBkZXIgQmVyZWNobnVuZyBkZXIgJFFTX3tad2lzY2hlbn0kIGFuZ2Vub21tZW4sIGRhc3MgZXMgZGllc2UgVW50ZXJzY2hpZWRlIGdhciBuaWNodCBnaWJ0IHVuZCBzb21pdCBhbGxlIFBlcnNvbmVuIGluIGVpbmVyIEdydXBwZSBkZW5zZWxiZW4gTWVzc3dlcnQgZXJ6aWVsdCBoYWJlbi4gDQoNCioqRXMgaXN0IGbDvHIgZGllIEJlcmVjaG51bmcgZGVyICRRU197Wndpc2NoZW59JCB2b24gSW50ZXJlc3NlLCB3aWUgc3RhcmsgZGllIEdydXBwZW5taXR0ZWx3ZXJ0ZSB1bSBkZW4gR2VzYW10bWl0dGVsd2VydCBzdHJldWVuLioqIA0KDQoNCg0KDQokKFxoYXR7dV9pfS1caGF0e3V9KV4yID0gKDQyLjYtMzQuNCleMiA9NjcuMjQkPGJyPg0KJChcaGF0e3VfaX0tXGhhdHt1fSleMiA9ICg1MS4yLTM0LjQpXjIgPTI4Mi4yNCQ8YnI+DQokKFxoYXR7dV9pfS1caGF0e3V9KV4yID0gKDI1LjYtMzQuNCleMiA9NzcuNDQkPGJyPg0KJChcaGF0e3VfaX0tXGhhdHt1fSleMiA9ICgxOC4yLTM0LjQpXjIgPTI2Mi40NCQ8YnI+DQoNCg0KJFZQXCwgaW5cLEdydXBwZW5faSR8CVRyYWluaW5nc2FydDEgfAlUcmFpbmluZ3NhcnQyIHwJVHJhaW5pbmdzYXJ0MyB8CVRyYWluaW5nc2FydDQJDQotLS0tLS0tLS0tLS0tLS0tLS0tLXwtLS0tLS0tLS0tLS0tLS18LS0tLS0tLS0tLS0tLS0tfC0tLS0tLS0tLS0tLS0tLXwtLS0tLS0tLS0tLS0tLS0NCjEJICAgICAgICAgICAgICAgICAgfDY3LjI0ICAgICAgICAgIHwJMjgyLjI0ICAgICAgICB8CTc3LjQ0ICAgICAgICAgfAkgIDI2Mi40NAkNCjIJICAgICAgICAgICAgICAgICAgfDY3LjI0ICAgICAgICAgIHwJMjgyLjI0ICAgICAgICB8CTc3LjQ0ICAgICAgICAgfAkgIDI2Mi40NAkNCjMJICAgICAgICAgICAgICAgICAgfDY3LjI0ICAgICAgICAgIHwJMjgyLjI0ICAgICAgICB8CTc3LjQ0ICAgICAgICAgfAkgIDI2Mi40NAkNCjQJICAgICAgICAgICAgICAgICAgfDY3LjI0ICAgICAgICAgIHwJMjgyLjI0ICAgICAgICB8CTc3LjQ0ICAgICAgICAgfAkgIDI2Mi40NAkNCjUJICAgICAgICAgICAgICAgICAgfDY3LjI0ICAgICAgICAgIHwJMjgyLjI0ICAgICAgICB8CTc3LjQ0ICAgICAgICAgfAkgIDI2Mi40NAkNCioqU3VtbWUqKiAgICAgICAgICAgfCoqMzM2LjIqKiAgICAgIHwJKioxNDExLjIqKiAgICB8KiozODcuMioqICAgICAgfAkgICoqMTMxMi4yKioNCg0KIyMjIyBFcmdlYm5pcyBkZXIgJFFTX3tad2lzY2hlbn0kLCAkZGZfe1p3aXNjaGVufSQsICRcaGF0e1xzaWdtYX1fe1p3aXNjaGVufV4yJA0KDQoNCiRRU197Wndpc2NoZW59ID0gMzM2LjIgKyAxNDExLjIgKyAzODcuMiArIDEzMTIuMiA9IDM0NDYuOCQ8YnI+DQokZGZfe1p3aXNjaGVufSA9IDQtMSA9IDMkPGJyPg0KJFxoYXR7XHNpZ21hfV97Wndpc2NoZW59XjIgPSAzNDQ2LjggLyAzID0gMTE0OC45MzMkPGJyPg0KDQoNCiMjIwlCZXJlY2hudW5nIGRlciBRdWFyZGFydHN1bW1lLUlubmVyaGFsYiANCg0KDQpEaWUgJFFTX3tpbm5lcmhhbGJ9JCBzcGllZ2VsdCBkaWUgQWJ3ZWljaHVuZ2VuIHdpZGVyLCBkaWUgYXVmZ3J1bmQgdm9uIE1lc3NmZWhsZXJuIHVuZCBpbmRpdmlkdWVsbGVuIEVpZ2VuaGVpdGVuIGVpbmVyIFBlcnNvbiBkYWbDvHIgc29yZ2VuLCBkYXNzIGRlciBpbmRpdmlkdWVsbGUgTWVzc3dlcnQgdm9tIGdlc2Now6R0enRlbiBHcnVwcGVubWl0dGVsd2VydCBhYndlaWNodC4gVW0gZGllICRRU197aW5uZXJoYWxifSQgenUgYmVyZWNobmVuLCB3aXJkIGbDvHIgamVkZSBHcnVwcGUgZGllIHF1YWRyaWVydGUgQWJ3ZWljaHVuZyBkZXIgTWVzc3dlcnRlIHZvbiBqZWRlciBQZXJzb25lbiBtaXQgZGVtIGpld2VpbGlnZW4gR3J1cHBlbm1pdHRlbHdlcnQgYmVyZWNobmV0Lg0KDQojIyMjIFJvaHdlcnRlIA0KIA0KJFZQXCwgaW5cLEdydXBwZW5faSR8CVRyYWluaW5nc2FydDEgfAlUcmFpbmluZ3NhcnQyIHwJVHJhaW5pbmdzYXJ0MyB8CVRyYWluaW5nc2FydDQJDQotLS0tLS0tLS0tLS0tLS0tLS0tLXwtLS0tLS0tLS0tLS0tLS18LS0tLS0tLS0tLS0tLS0tfC0tLS0tLS0tLS0tLS0tLXwtLS0tLS0tLS0tLS0tLS0NCjEJICAgICAgICAgICAgICAgICAgfDQ1ICAgICAgICAgICAgIHwJNTIgICAgICAgICAgICB8CTIzICAgICAgICAgICAgfAkgIDE4CQ0KMgkgICAgICAgICAgICAgICAgICB8NDEgICAgICAgICAgICAgfAk1MyAgICAgICAgICAgIHwJMjcgICAgICAgICAgICB8CSAgMTYJDQozCSAgICAgICAgICAgICAgICAgIHw0MCAgICAgICAgICAgICB8CTQ4ICAgICAgICAgICAgfAkyOSAgICAgICAgICAgIHwJICAxOQkNCjQgICAgICAgICAgICAgICAgICAgfDQ0ICAgICAgICAgICAgIHwJNTEgICAgICAgICAgICB8CTI0ICAgICAgICAgICAgfAkgIDIxCQ0KNSAgICAgICAgICAgICAgICAgICB8NDMgICAgICAgICAgICAgfAk1MiAgICAgICAgICAgIHwJMjUgICAgICAgICAgICB8CSAgMTcJDQoqKlN1bW1lKiogICAgICAgICAgIHwqKjIxMyoqICAgICAgICB8CSoqMjU2ICAqKiAgICAgfCoqMTI4KiogICAgICAgIHwJICAqKjkxKioJDQoqKk1pdHRlbHdlcnQqKiAgICAgIHwqKjQyLjYqKiAgICAgICB8CSoqNTEuMiAqKiAgICAgfCoqMjUuNioqICAgICAgIHwJICAqKjE4LjIqKgkNCg0KJCQoeF97MiwxfS1caGF0e3Z9KV4yID0gKDQ1LTQyLjYpXjIgPSA1Ljc2ICQkIA0KDQokJCh4X3syLDJ9LVxoYXR7dn0pXjIgPSAoNDEtNDIuNileMiA9IDIuNTYgJCQgDQoNCiQkKHhfezMsMX0tXGhhdHt2fSleMiA9ICg1Mi01MS4yKV4yID0gMC42NCAkJCANCiQkKHhfezQsMX0tXGhhdHt2fSleMiA9ICgyMy0yNS42KV4yID0gNi43NiAkJA0KDQoNCg0KJFZQXCwgaW5cLEdydXBwZW5faSR8CVRyYWluaW5nc2FydDEgfAlUcmFpbmluZ3NhcnQyIHwJVHJhaW5pbmdzYXJ0MyB8CVRyYWluaW5nc2FydDQJDQotLS0tLS0tLS0tLS0tLS0tLS0tLXwtLS0tLS0tLS0tLS0tLS18LS0tLS0tLS0tLS0tLS0tfC0tLS0tLS0tLS0tLS0tLXwtLS0tLS0tLS0tLS0tLS0NCjEJICAgICAgICAgICAgICAgICAgfDUuNzYgICAgICAgICAgIHwJMC42NCAgICAgICAgICB8CTYuNzYgICAgICAgICAgfAkgIDAuMDQJDQoyCSAgICAgICAgICAgICAgICAgIHwyLjU2ICAgICAgICAgICB8CTMuMjQgICAgICAgICAgfAkxLjk2ICAgICAgICAgIHwJICA0Ljg0CQ0KMwkgICAgICAgICAgICAgICAgICB8Ni43NiAgICAgICAgICAgfAkxMC4yNCAgICAgICAgIHwJMTEuNTYgICAgICAgICB8CSAgMC42NA0KNAkgICAgICAgICAgICAgICAgICB8MS45NiAgICAgICAgICAgfAkwLjA0ICAgICAgICAgIHwJMi41NiAgICAgICAgICB8CSAgNy44NAkNCjUJICAgICAgICAgICAgICAgICAgfDAuMTYgICAgICAgICAgIHwJMC42NCAgICAgICAgICB8CTAuMzYgICAgICAgICAgfAkgIDEuNDQJDQoqKlN1bW1lKiogICAgICAgICAgIHwqKjE3LjIqKiAgICAgICB8CSoqMTQuOCoqICAgICAgfCoqMjMuMioqICAgICAgIHwJICAqKjE0LjgqKgkNCg0KIyMjIyBFcmdlYm5pcyBkZXIgJFFTX3tpbm5lcmhhbGJ9JCwgJGRmX3tpbm5lcmhhbGJ9JCwgJFxoYXR7XHNpZ21hfV97aW5uZXJoYWxifV4yJA0KDQokUVNfe2lubmVyaGFsYn0gPSAxNy4yICsgMTQuOCArIDIzLjIgKyAxNC44ID0gNzAkPGJyPg0KJGRmX3tpbm5lcmhhbGJ9ID0gNCooNS0xKSA9IDE2JDxicj4NCiRcaGF0e1xzaWdtYX1fe2lubmVyaGFsYn1eMiA9IDcwIC8gMTYgPSA0LjM3NSQ8YnI+DQoNCg0KDQoNCiMjIyAgJEZfe2tyaXRpc2NofSQgDQoqKkYtVmVydGVpbHVuZyoqIA0KDQokRl97a3JpdGlzY2h9JA0KJGRmX3taw6RobGVyfSA9IGRmX3t6d2lzY2hlbn0gPSAzJDxicj4gDQokZGZfe05lbm5lcn0gPSBkZl97aW5uZXJoYWxifSA9IDE2JDxicj4NCg0KRGVyIFdlcnQgZsO8ciAkRl97a3JpdGlzY2h9JCBsaWVndCBiZWkgMy4yNC4NCg0KDQoNCg0KDQojIyMgICRGX3tlbXBpcmlzY2h9JCANCg0KJCRGX3tlbXB9PSBcZnJhY3tcaGF0e1xzaWdtYX1fe1p3aXNjaGVufV4yfXtcaGF0e1xzaWdtYX1fe2lubmVyaGFsYn1eMn0gPSBcZnJhY3sxMTQ4LjkzM30gezQuMzc1fSA9IDI2Mi42MSQkDQoNCg0KDQoNCiMjIFNpZ25pZmlrYW56IGRlciBUZXN0c3RhdGlzdGlrDQoNCg0KSmUgbWVociBWYXJpYXRpb24gZHVyY2ggZGllIFN0dWZlbnp1Z2Vow7ZyaWdrZWl0IGVya2zDpHJ0IHdpcmQsIGRlc3RvIGjDtmhlciBmw6RsbHQgZGVyIEYtV2VydCBhdXMuIA0KDQokUVNfe3p3aXNjaGVufSQgZWluIE1hc3MgZsO8ciBkaWUgZXJrbMOkcnRlIFZhcmlhbnogZGFyc3RlbGx0LCB3w6RocmVuZCAkUVNfe2lubmVyaGFsYn0kIGVpbiBNYXNzIGbDvHIgZGllIFJlc2lkdWFsdmFyaWFueiBkZXMgTW9kZWxscyBkYXJzdGVsbHQuIA0KDQpJc3QgZGVyIEYtV2VydCBow7ZoZXIgYWxzIGRlciBrcml0aXNjaGUgV2VydCwgc28gaXN0IGRlciBUZXN0IHNpZ25pZmlrYW50Lg0KDQokJEZfe2tyaXRpc2NofSAgPSAzLjI0IDwgMjYyLjYxID0gRl97ZW1wfSQkDQo=