Berechnung des Korrelationskoeffizienten
Die Korrelation beschreibt, wie eng zwei numerische Merkmale miteinander verknüpft sind. Sie gibt an, ob eine Veränderung einer Variable eine Vorhersage über die Veränderung der anderen erlaubt. Zur quantitativen Erfassung wird der Korrelationskoeffizient r verwendet, eine Methode, die auf Bravais und Pearson zurückgeht.
Dieses Maß schwankt zwischen −1 und +1: Ein Wert von −1 bedeutet eine perfekte negative Abhängigkeit, während +1 eine perfekte positive Beziehung kennzeichnet. Liegt r = 0, besteht kein linearer Zusammenhang. Die Berechnung setzt voraus, dass die Beziehung zwischen den Merkmalen linear ist und keine kausalen Schlüsse gezogen werden.
Berechnung eines Beispiel
\(x_i\) IQ |
89 |
100 |
102 |
73 |
120 |
102 |
98 |
106 |
\(y_i\) Projekterfolg |
50 |
60 |
70 |
40 |
80 |
72 |
61 |
73 |
\[\bar{x} = \frac{1}{8} \cdot (89+100+102+73+120+102+98+106) = 98.75\]
sprintf("x-quer: %.2f", 1/8*(89+100+102+73+120+102+98+106))
[1] "x-quer: 98.75"
\[\bar{y} = \frac{1}{8} \cdot (50+60+70+40+80+72+61+73) = 63.25\]
sprintf("y-quer: %.2f", 1/8*(50+60+70+40+80+72+61+73))
[1] "y-quer: 63.25"
Zähler
\[
\begin{align*} \sum_{i=1}^n (x_i-\bar{x})(y_i-\bar{y}) = & (89-98.75)\cdot (50-63.25)+\\ & (100-98.75)\cdot (60-63.25)+\\ & (102-98.75)\cdot (70-63.25)+\\ & (73-98.75)\cdot (40-63.25)+\\ & (120-98.75)\cdot (80-63.25)+\\ & (102-98.75)\cdot (72-63.25)+\\ & (98-98.75)\cdot (61-63.25) +\\ & (106-98.75)\cdot (73-63.25) \\ & = 1202.5 \end{align*}
\]
c (89-98.75)* (50-63.25)+(100-98.75)* (60-63.25)+(102-98.75)* (70-63.25)+(73-98.75)* (40-63.25)+(120-98.75)* (80-63.25)+(102-98.75)* (72-63.25)+(98-98.75)* (61-63.25) +(106-98.75)* (73-63.25))
Nenner
\[
\sqrt{\sum_{i=1}^n (x_i – \bar{x})^2} = \sqrt{(89-98.7)^2 + (100-98.7)^2 + \ldots +(106-98.7)^2} = 35.85
\]
sprintf("%.2f",sqrt((89-98.7)^2+(100-98.7)^2+(102-98.7)^2+(73-98.7)^2+(120-98.7)^2+(102-98.7)^2+(98-98.7)^2+(106-98.7)^2))
[1] "35.85"
\[
\sqrt{\sum_{i=1}^n (y_i – \bar{y})^2} = \sqrt{(50-63.25)^2 + (60-63.25)^2 + \ldots +(73-63.25)^2} = 35.064
\]
sqrt((50-63.25)^2+(60-63.25)^2+(70-63.25)^2+(40-63.25)^2+(80-63.25)^2+(72-63.25)^2+(61-63.25)^2+(73-63.25)^2)
[1] 35.06423
Korrelationskoeffizienten
\[
r= \frac{1202.5}{35.85 \cdot 35.064} = 0.95
\]
sprintf("r:%.5f", (1202.5)/(35.85 * 35.064))
[1] "r:0.95661"
LS0tCm91dHB1dDogaHRtbF9ub3RlYm9vawotLS0KIyBCZXJlY2hudW5nIGRlcyBLb3JyZWxhdGlvbnNrb2VmZml6aWVudGVuCkRpZSBLb3JyZWxhdGlvbiwgYXVjaCBiaXZhcmlhdGUgS29ycmVsYXRpb24gb2RlciBQcm9kdWt0LU1vbWVudC1Lb3JyZWxhdGlvbiBnZW5hbm50LCBiZXNjaHJlaWJ0IGRlbiBadXNhbW1lbmhhbmcgdm9uIHp3ZWkgaW50ZXJ2YWxsc2thbGllcnRlbiBNZXJrbWFsZW4vVmFyaWFibGVuIGVpbmVyIFp1ZmFsbHNzdGljaHByb2JlLiBFaW5lIE3DtmdsaWNoa2VpdCwgZGllIFN0w6Rya2UgZGVzIFp1c2FtbWVuaGFuZ3MgenUgYmVzdGltbWVuLCBpc3QgZGllIEJlcmVjaG51bmcgZGVzIEtvcnJlbGF0aW9uc2tvZWZmaXppZW50ZW4gciBuYWNoIEJyYXZhaXMgdW5kIFBlYXJzb24uIFZvcmF1c3NldHp1bmcgaXN0IGhpZXJiZWksIGRhc3MgZXMgc2ljaCB1bSBlaW5lbiBsaW5lYXJlbiBadXNhbW1lbmhhbmcgendpc2NoZW4gZGVuIGFuYWx5c2llcnRlbiBNZXJrbWFsZW4gaGFuZGVsdC4gWnVzw6R0emxpY2ggd2lyZCBoaWVyIGVpbiB1bmdlcmljaHRldGVyIFp1c2FtbWVuaGFuZyB1bnRlcnN1Y2h0LCBkLmguIGRpZSBWYXJpYWJsZW4gc2luZCB1bmFiaMOkbmdpZyB2b25laW5hbmRlciB1bmQgZm9sZ2xpY2ggd2VyZGVuIGtlaW5lIGthdXNhbGVuIEF1c3NhZ2VuIGdlbWFjaHQuCgpEZXIgS29ycmVsYXRpb25za29lZmZpemllbnQgciBrYW5uIFdlcnRlIHp3aXNjaGVuIOKIkjEgdW5kICsxIGFubmVobWVuIHVuZCBpc3QgdW5hYmjDpG5naWcgdm9uIGRlciBNYcOfZWluaGVpdC4gRWluIFdlcnQgdm9uIOKIkjEgYmVzY2hyZWlidCBlaW5lIHBlcmZla3QgbmVnYXRpdmUgS29ycmVsYXRpb24gdW5kIGVpbiBXZXJ0IHZvbiArMSBlaW5lIHBlcmZla3QgcG9zaXRpdmUgS29ycmVsYXRpb24uIEJlaSByPTAgbGllZ3Qga2VpbiBsaW5lYXJlciBadXNhbW1lbmhhbmcgendpc2NoZW4gZGVuIFZhcmlhYmxlbiB2b3IuCgoKIyMjIEZvcm1lbCAxCiQkCnIgPSBcZnJhY3tcc3VtX3tpPTF9Xm4gKHhfaSDigJMgXGJhcnt4fSkgKHlfaSDigJMgXGJhcnt5fSl9eyBcc3FydHtcc3VtX3tpPTF9Xm4gKHhfaSDigJMgXGJhcnt4fSleMn0gXGNkb3QgXHNxcnR7XHN1bV97aT0xfV5uICh5X2kg4oCTIFxiYXJ7eX0pXjJ9IH0KJCQKCgojIyMgRm9ybWVsIDIKJCQKcj0gXGZyYWN7XHN1bV97aT0xfV5uIHhfaSB5X2kg4oCTIG4gXGJhcnt4fSBcYmFye3l9fXtcc3FydHtcc3VtX3tpPTF9Xm4geF9pXjIg4oCTIG5cYmFye3h9XjJ9IFxjZG90IFxzcXJ0e1xzdW1fe2k9MX1ebiB5X2leMiDigJMgblxiYXJ7eX1eMn0gfQokJAoKRGllIHp3ZWl0ZSBGb3JtZWwgaXN0IGVpbmZhY2hlciB1bmQgc2NobmVsbGVyIGltIFRhc2NoZW5yZWNobmVyIHp1IGJlcmVjaG5lbi4gCjxicj4KbWl0Cjxicj4KJHhfaSwgeV9pID0kIFdlcnRlIGRlciBiZWlkZW4gVmFyaWFibGVuIHggdW5kIHk8YnI+CiRcYmFye3h9LFxiYXJ7eX0gPSQgTWl0dGVsd2VydGUgZGVyIGJlaWRlbiBWYXJpYWJsZW4geCB1bmQgeSA8YnI+CiRuID0kIFN0aWNocHJvYmVuZ3LDtnNzZTxicj4KCgojIyMgQmVyZWNobnVuZyBlaW5lcyBCZWlzcGllbAoKCgp8IFBlcnNvbiAkaSQgICAgICAgICB8IDEgfCAyIHwgMyB8IDQgfCA1IHwgNiB8IDcgfCA4IHwgIAp8LS0tLS0tLS0tLS0tLS0tLS0tLS18LS0tfC0tLXwtLS18LS0tfC0tLXwtLS18LS0tfC0tLXwKfCAkeF9pJCBJUSAgICAgICAgICAgfCA4OXwxMDB8MTAyfDczIHwxMjB8MTAyfDk4IHwxMDZ8CnwgJHlfaSQgUHJvamVrdGVyZm9sZ3wgNTB8IDYwfCA3MHwgNDB8IDgwfCA3MnwgNjF8IDczfAoKCiQkXGJhcnt4fSA9IFxmcmFjezF9ezh9IFxjZG90ICg4OSsxMDArMTAyKzczKzEyMCsxMDIrOTgrMTA2KSA9IDk4Ljc1JCQKYGBge3IgbWVzc2FnZT1GQUxTRSwgd2FybmluZz1GQUxTRSwgcGFnZWQucHJpbnQ9RkFMU0V9CnNwcmludGYoIngtcXVlcjogJS4yZiIsIDEvOCooODkrMTAwKzEwMis3MysxMjArMTAyKzk4KzEwNikpCmBgYAokJFxiYXJ7eX0gPSBcZnJhY3sxfXs4fSBcY2RvdCAoNTArNjArNzArNDArODArNzIrNjErNzMpID0gNjMuMjUkJApgYGB7ciBtZXNzYWdlPUZBTFNFLCB3YXJuaW5nPUZBTFNFLCBwYWdlZC5wcmludD1GQUxTRX0Kc3ByaW50ZigieS1xdWVyOiAlLjJmIiwgMS84Kig1MCs2MCs3MCs0MCs4MCs3Mis2MSs3MykpCmBgYAojIyMgWsOkaGxlcgokJApcYmVnaW57YWxpZ24qfSBcc3VtX3tpPTF9Xm4gKHhfaS1cYmFye3h9KSh5X2ktXGJhcnt5fSkgPSAmICg4OS05OC43NSlcY2RvdCAoNTAtNjMuMjUpK1xcICYgKDEwMC05OC43NSlcY2RvdCAoNjAtNjMuMjUpK1xcICYgKDEwMi05OC43NSlcY2RvdCAoNzAtNjMuMjUpK1xcICYgKDczLTk4Ljc1KVxjZG90ICg0MC02My4yNSkrXFwgJiAoMTIwLTk4Ljc1KVxjZG90ICg4MC02My4yNSkrXFwgJiAoMTAyLTk4Ljc1KVxjZG90ICg3Mi02My4yNSkrXFwgJiAoOTgtOTguNzUpXGNkb3QgKDYxLTYzLjI1KSArXFwgJiAoMTA2LTk4Ljc1KVxjZG90ICg3My02My4yNSkgXFwgJiA9IDEyMDIuNSBcZW5ke2FsaWduKn0KJCQKCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0UsIHBhZ2VkLnByaW50PUZBTFNFfQpjICg4OS05OC43NSkqICg1MC02My4yNSkrKDEwMC05OC43NSkqICg2MC02My4yNSkrKDEwMi05OC43NSkqICg3MC02My4yNSkrKDczLTk4Ljc1KSogKDQwLTYzLjI1KSsoMTIwLTk4Ljc1KSogKDgwLTYzLjI1KSsoMTAyLTk4Ljc1KSogKDcyLTYzLjI1KSsoOTgtOTguNzUpKiAoNjEtNjMuMjUpICsoMTA2LTk4Ljc1KSogKDczLTYzLjI1KSkKYGBgCgojIyMgTmVubmVyCgokJApcc3FydHtcc3VtX3tpPTF9Xm4gKHhfaSDigJMgXGJhcnt4fSleMn0gPSBcc3FydHsoODktOTguNyleMiArICgxMDAtOTguNyleMiArIFxsZG90cyArKDEwNi05OC43KV4yfSA9IDM1Ljg1CiQkCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0UsIHBhZ2VkLnByaW50PUZBTFNFfQoKc3ByaW50ZigiJS4yZiIsc3FydCgoODktOTguNyleMisoMTAwLTk4LjcpXjIrKDEwMi05OC43KV4yKyg3My05OC43KV4yKygxMjAtOTguNyleMisoMTAyLTk4LjcpXjIrKDk4LTk4LjcpXjIrKDEwNi05OC43KV4yKSkKYGBgCgoKJCQKXHNxcnR7XHN1bV97aT0xfV5uICh5X2kg4oCTIFxiYXJ7eX0pXjJ9ID0gXHNxcnR7KDUwLTYzLjI1KV4yICsgKDYwLTYzLjI1KV4yICsgXGxkb3RzICsoNzMtNjMuMjUpXjJ9ID0gMzUuMDY0CiQkCmBgYHtyIG1lc3NhZ2U9RkFMU0UsIHdhcm5pbmc9RkFMU0UsIHBhZ2VkLnByaW50PUZBTFNFfQpzcXJ0KCg1MC02My4yNSleMisoNjAtNjMuMjUpXjIrKDcwLTYzLjI1KV4yKyg0MC02My4yNSleMisoODAtNjMuMjUpXjIrKDcyLTYzLjI1KV4yKyg2MS02My4yNSleMisoNzMtNjMuMjUpXjIpCmBgYAojIyMgS29ycmVsYXRpb25za29lZmZpemllbnRlbgokJApyPSBcZnJhY3sxMjAyLjV9ezM1Ljg1IFxjZG90IDM1LjA2NH0gPSAwLjk1CiQkCmBgYHtyfQpzcHJpbnRmKCJyOiUuNWYiLCAoMTIwMi41KS8oMzUuODUgKiAzNS4wNjQpKQpgYGAKCg==